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A Shielded Two-Wire Hybrid Junction

by
Edgar W. Matthews, Jr.

Cruft Laboratory, Harvard University

Cambridge, Massachusetts

ABSTRACT

This paper describes a shielded two-wire hybrid junction and presents
a theoretical analysis of its properties, with particular emphasis upon its
use as the basic element of an impedance bridge. In addition, the problem
of definition and measurement of impedances on this type of line, with two

propagating modes, is discussed; and the line constants for the particular
line configuration used are evaluated.

SHIELLDED TWO-WIRE LINE THEORY

A. Generalized Reflection Coefficients

The conventional analysis of a two-wire line usually begins with the
assumption that the currents in the two wires are exactly equal in amplitude
and opposite in phase at any transverse plane. In practice, however, this is
seldom realized, especially when the line length is comparable to the wave -
length of the applied voltage. In any case, the actual currents can be sepa-
rated into two components: balanced currents, which are exactly equal and
opposite; and unbalanced currents, which are equal and in the same direc-
iion in both wires. On open two-wire lines, balanced currents are true
transmission-line-type currents, in that their associated electromagnetic
fields cancel almost exactly at large distances from the wires, for line
spacings which are a cmall fraction of a wavelength. On the other hand, the
fields from unbalanced currents reinforce each other, and thus produce a
radiation of real power. It is for this reason that two-wire transmission

lines used at high frequencies are often shielded.

o
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A shield around a two-wire line has little effect on the balanced

currents, except to change their characteristic impedance; but it does
eliminate the radiation of the unbalanced components by providing a return
path for the currents so that they also behave like true transmission-line-
type currents. This situation is usually spoken of in terins of a transmission
line which has two propagating '"modes/' balanced and unbalanced. On a
uniform, symmetriccl line composed of good conductors, these two modes can
exist and propagate entirely independently, just as in the case of a waveguide
operating at a frequency such that more than one mode can propagate. Each
mode can bhe considered as existing on a separate line, with its own generator
and load terminations. Theo only possible additional factor which must be
taken into consideration is the coupling between modes at the generator and
the load. This can be accounted for in the separate-line model by representing
both generator and load as two-terminal-pair networks, connected between
the two lines. In the scattering-representation matrix for theese networks,
the Sll and S22 factors are in the nature of self-reflection coefficients, while
the S12 and SZ]. factors represent coupling between modes, and can be consid-
ered as mutual reflection coefficients. Inasmuch as the two modes actually
exist on the same line, this scattering matrix may be considered a type of
generalized reflection-coefficient matrix, with elements PBB and PUU to
represent the self-reflection of the balanced and unbalanced modes, respec-
tively, andT‘BU andr‘UB to represent the balanced reflection from an un-
balanced incident wave, and vice versa, respectively. If tlie component waves
are normalized properly in terms ot their characteristic impedances,rBU

=r\UB because of reciprocity. The need for such a generalized reilection
coefficient matrix with at least three independent terms is obviously brougnt

about by the coexistence of the two modes on a single transmission line.

Coupling between the modes usually exists only because of some physical
dissymmetry of the line or terminations. If this can be aveided, the two modes
can be treated entirely independently. Systems with couplings between modes
can rapidly become too complex for analysis; and because such couplings
usually arise unintentionaily, most of the following work will be done on the
ideal assumption that none exists. However, after an analysis of the measure-

ment problem concerning the component waves, a development of the gener-
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alized reflection coefficient matrices for simple tec-and pi-terminaiing net-

works will be given, to show how cross-coupling arises and may be treated.

B. Measurement of Component Waves

Following the notation of Tomiyasu [1], the potential of each of the two

wires of a shielded two-wire line, with respect to the shield, may be writtenas:

-y,LX +'YX +y. X =YX
V.=(Ae B +Be P 4+cCe Y ¢pe U ) (1-1a)

~YnpX + ypX + vy, % “Yi & -
(-Ae B—Be N + Ce U+De U)ert

V2

(1-1b)
where A and D represent the comple~ amplitudes of the incident balanced and
unbalanced waves, respectively, and B and C the reflected balanced and un-
talanced waves, respectively. Yg is the balanced propagation constant, and
Yy the unbalanced. The complex amplitude coefficients are formally related
at the generator and load terminals by generalized reflection coefficients as
described in the previous section; and when these relations are incorporated
into the above sct of voltage equations, the voltages are uniquely determined
at each point along the line. Conversely, a given voltage distributionuniquely
determines the terminating reflection coefficients; this is the usual measure-
ment problem -- determination of the terminating impedances from the

measured voltage distributions.

To date, the most accurate means of impedance measurement on long
ransmission lines has been by examining the voltage (or current) standing-
wave distribution using a sampling technique. The usual quantities actually
measured are the standing-wave ratio, p, and the position of the standing-
wave minimum with respect to the terminal plane of the impedance being
measured. On the shielded two-wire line, it is convenient to measure these
same gquantities on each of the lines independently. However, anexamination
of Egqs. (1-1) will show that there are essentially eight independent quantities,
corresponding to the amplitude and phase of each of the four complex coeffi-
cients. Inasmuch as the determination of relative values only is necessary for:

impedance calculations, one of these coefficients may be considered arbitrary.
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The measurement of the cther three is then necesszry for determining the
three independent complex reflection coefficients of the terminatisa; this
cannot be accomplished by measurement of the two standing-wave ratios
and positions alone. One alternative is to include a measurement of rela-
tive time phase, which is generally considered difficult. Another alterna-
tive is to eliminate one of the ctomponent waves during a particular measure-
ment; this can be done to one of the incident waves only, as the reflected
waves will be produced by the unknown termination itself, If the generator
excites only one mode, and if the reflected wave in the second mode 1is
completely absorbed, there will be no incident wave in the second mode.
Tomiyasu [ 1] has shown how to eliminate the unbalanced incident wave in

this manner, and gives curves for the calculation OIPB and PUB frcm the

B

resulting measurementis. In order to determinel andr‘BU, a second

uu
similar set of measurements has to be made, with the balanced incident

wave eliminateaq.

C. Reflection Coefficients of Simple Terminating Networks

The possibility of representing a generalized termination of a shielded
two-wire line in terms of a two-terminal-pair network connecting the two
modes has just been discussed; furthermore, a:; two-terminal-pair netwosk
can be represented at a given frequency by a simple three-element tce or
pi-network, with perhaps an ideal isolation transformer. It ie the purpose
of this section to develop the relationship between the elements of both a
tee and a pi-terminating network and the elements of the generalized re-

flection coefficient matrix.

Simple tee and pi terminat.ng networks fcr a shielded two-wire line
are shown in Fig. 1-1; the shield constitutes the common gruund connection,
and the voltages are specified relative to the ghield. Assumed positive direc-

tions of currents are as shown.

In the general expressions {1-1) for the vcltages on the two wireg, the
identification of the terms A and D as incident or forward-propagating waves
implies that the distance x is measured in a positive directior. away from the
generator., The zero reference point for x is, however, quite arbitrary, and

in order to avoid unnecessary complication in the present developinent, let
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this zero reference point for x be defined as the terminals of the terminating

network. At this point, Eqs. (1-1}) reduce to:

V1(0)=A+B+C+D (1-1c)

V,(0)=- A-B +C+D (1-1d)

where the time dependence is implicit. The current equations can be
obtained from {1-1) with the use of the relationship Iz =Ich =-dV/dx, where

Z,_ is thecharacteristic impedance of the particular mode. These become:

[ “YpX Yp* Yiix oYX :
Il=!_1 {Ae B —BeB)+7-1—(-CeU + De U) e‘]wt

2B “ecU
(1-2)
g (-Ae YBX 4 Be YBY) gl - (-CeYUx + De-YUx) eIt
2 |2 Z
cB cU
and at the terminals of the terminating network, these are:
11(0) _ AZ-B + -g+D
cB cU
(1-2a)

12(0) - -AZ+B i -CZ+D
cB cU

The characteristic impedance defined here for each mode is the ratio of the
voltage of that mode on one wire, with respect to the shield, to the current

of that mode in one wire. This definition is desirable in the present develop-
ment for the sake of symmetry; it differs, however, from the conventional
definition in the next section by a factcr of two, since those definitions are
made in terms of the voltage difference between wires for the balanced mode,

and the total current in both wires for the unbalanced mode.

The generalized reflection coefficients may be defined in terms of the

voltage equations (1-1), subject to ceriain conditions, as follows:

_(B o
"'sp (AYp o Pov =1, _

(1-3)

r\UB

2[a
o
I
o
)
o
(e
E
>
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1. Tee Network

The following general relations may be written for the tee network of
Fig. 1l-1la:

V=12 4 2,) +1,2, V,=LZ, +1,(Z,+ 2 (1-4)

Expressing the voltages and currents in terms of the component waves from
(1-1c), (1-14), and (1-2a), these become:

_(A-B D-QC) (B-A , D-QC)
A+B+C+D-= + (Z +Z)+Tz— +—-—-’Z (1-5)
( ch ZcU) : C cB ZcU 2
_(A-B, D-C) ., (B-A , D-C)
C+D-A-B= +——7,, Z, +- +___](Z + Z,)
(ZcB “cu 3 (ZcB ZcU 4 .

wn
o
(52
[
-
(=]
o
o)
"
(]
o
3
fu
o
Vs
-

minating B and C in turn gives:

_B _1 _ -
BB & = 3 [(Z) - ZgNZ, + 225+ 2 ) +(Z, - Z gNZ, + 225 + Zey))
i (1-6a)
IS - L Sl
UB A A (1-6b)
here A =(Z)+Z pNZy 4225 + Z ) +(2, + Z_p)Z) +2Z5 + Z_1))
Setting A = 0 in (1-5) gives:
N =Stz vor. -z NZ,+Z )1 +(2,+22,-2Z_ MZ +Z _)]
Uu D a 1 ‘3 cU' =2 cB’ 2 3 cu’ 1 cB
S 22 _o(2) - Z,) (1-6c)
BU D~ 7
(1-64)

It is interesting to note that the normalized cross-coupling coefficients
are equal, that is:

Tys  Teu _ %% - %)

= = (1-7)
ZcU ZCB L
o - H {7 - . = =
Furthermore, for a symmetrical tee {Z, ZZ)’ T“UB BU 0,
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and:
_ %1% e Sl T (.-8)
TeB 7277 - Tou*Z 32Z2.7Z
1 cB 1 2 cU

which are just the usual relationships between reflection coefficients and

terminating impedances for a single mode.

2. Pi-Network

The foliowing relaiions may be written for the pi-network of Fig. 1-1b:

Ii =VlY1 I'2=V2Y2 I3 =(V1 -VZ,)Y3
(1-9)
11=I'1+I3 IZ=I'Z-I3
Combining these to eliminate I'l, I'Z, and 13 gives:
I1 =V1Y1+(V1 --VZ)Y3 IZ=V2YZ-(V1 -VZ)Y3
(1-10)

Expressing these voltages and currents in terms of component waves, from
(1-1c¢), (1-14d), and (1-2a),

5B +2-C. v (A+B+C+D)+2Y,(A+B) (1-11a)

cB cU

B-A D-C

7 + 7 =Y2(C +D - A -B) -2Y3(A+B) (1-11b)
cB cU
Setting D = 0 and A = 0, in turn, and solving as above,

-1 .Y - Y. -

rBB --E[(YCU +Y1)(YCB Y‘2 2Y3) + (YCU+ YZ)(YcB Y1 2Y3)] (l-12)
. ZYCB(YZ - Yl)

rUB - Al (1-12b}

1

= =T - =, 3

Tou = 3l ey - Y)Y g # ¥, +2Y3) + (Y 5 - YUY g+ Y, +2Y,)]

(1-12c)



TR183 -8-

2% e
Tpy = —2 2 (1-12d)
& 0 —
where &' = (Y + YWY 5 + Y, + 2Y3) + (Y + YUY _p + ¥, +2Y,).
Again,
Tye Ty &Y, -Y)
Y = Y = AT (1'13)
cB cU
or,
Tug TBy Y- Yy S
=] = - T {l-15a
2"cU ZCB z'CUZ(:B A
And for a symmetrical pi, (Y, = Y,), FUB = ]—‘BU = 0, and
rooereB 172 o Yo )
BB ‘ICB+Y1 +2Y3 uu YCU +Y1

D. Transmission-Line Constants

In the conventional development of transmission-line equations, a
number of quantities are usually introduced which have some physical
significance and at the same time specify the electrical properties of the
line. These quantities are Zo’ the characteristic impedance, and y=a +jp
the complex propagation constant, composed of a, the attenuation constant,
and B, the phase constant. In order to measure any actual impedances on a
transmission line, it ig necessary to know these constants for the line. A
set of such constants may be defined for each mode which propagates on the
line, Thes: constants will now be determined for the particular type of line

used for the hybrid junction as shown in Fig. 1-2.

1. Characteristic Impedance

The characteristic impedance is defined as the complex ratio of voltage
to current at any point on a uniform transmission line of infinite length, Al-
ternatively, it is that impedance which will terminate a transmission line of

finite length without reflections. For a low-loss liie, Zo is predominantly

TGS T SO . T
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real, and will be considered as such here

The theoretical determination of Z0 is simplified by making use of the
fact that for any transverse electromagnetic mode on a perfectly conducting
transmission line, the characteristic impedance is directly related to the

capacitance per unit length by the formula:

: . -8
Z - Jope _jope | 1 . 10 (1-15)
o yC JpC v C 3C .

o
where Z is given in ohms if C is in farads per meter [2].

Frankel [ 3] gives the characteristic impedance of a two-wire line in
a rectangular shield for the balancedmode only. His method of calculation
is based upon a consideration of the electrostatic potential for a set of four
line charges A, of alternate p'olarity, located in cross section on the real
axis of the complex w-plane at +a and #3. This potential is given by:
| w

_ 1 '0||
V =- 2> '.nTw +Ql]

w o+ ﬁl A
o (1-16)
wWoo- pl

If the conformal transformation w = ekz is made, the four-line charges
transform into an infinite set in the z-plane, corresponding to the images

of a two-wire line between parallel conducting planes.

In order to determine the capacitance per unit length for this con-
figuration, it.is necessary to evaluate the pctential on the surface of the
wires, which are assumed tobe perfect conductors of circular cross section
It is then necessary to require the radius of the wires to be small com-
pared to the distance between them and to the distance to any side of the
shield, for two reasons: to permit use of the fact that small circles in the
z-plane transform into circles in the w-plane; and second, to permit the
distance from one wire to any point on the surface of the other to be re-
placed by the distance between centers. This approximation is equivalent
to the assumption that the angular charge distribution around the wires is

uniform. With these assumptions, the potential between wires is:

10

_ _ . (2b .
V2 V., =4\ In (=7 tanh (1-17)

SR

1

W
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where charge on cach wire per unit length

1l

distance between parallel conducting planes

distance between wires

N
b
D
a

radius of wires

The presence of the vertical walls of the shield can be accounted for by
the method of images, using an infinite series of irnages extending to + . The
contribution of each pair of images to the potential difference between theorigi-
nal wires is found, and a summation taken. Then using (1-15) and the relation

= C(VZ - Vl)’ Zo for the balanced mode becomes
2

W D
81nh“
Rt 50

[0 0]
— cosh
Z _=1201nl 22 b tanh 7_2; - 120 In Z (1-18)

oB (w .
m=1 1 - [ sinh W -1
mnr w

LSlnh T

where w =distance between vertical walls, shown in Fig., 1-2.

The same procedure can be used to obtain Zo for the unbalanced mode,
the only difference being in the sign of the charges on the wires and images.
Equation (1-16) for the potential at any point in the w-plane becomes:

= |w - al lw -BI
V=-2\In [ Fa % B (1-19)

and the potential of both wires above ground (the shield) is then:

=7)\1n\ Zb TTD)

V., = VZ (& coth 25 ) (1-20)

1

for the configuration between two parallel conducting planes. Tncluding the
effect of the images for the vertical walls gives Z for the unbalanced mode as:

D -2

cosh &= 55

1+
o0 mnww

nh
(2b D) |, E ' m LB _Zb_
ZOU-301n(—: ccth '23) r30 (‘1) In 2 (1-21)

m=1]

mT w
2b -

The transmission line used in this research consists 2f two 1/8-irch

cosh
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diameter brass wires spaced 1/2 inch apart, enclosed in a standard 3 cm

waveguide. The dimensions as shown in Fig. 1-2 are thus: w = 0.900";

b = 0.400'"; D = 0.500"; and a = 0.0625". With these diinensions, the formulas
7

for Z, couverge quickly to yield the values:

ZoB = 153.852 ohms ZoU = 40.629 ohms

As a check chiefly on the validity of the assumptions involved in the
foregoring development as applied to the particular case of interest, a numerical
method is avzilable for the calculation of an approximate value of Z0 corre-
sponding to a particular set of dimensions. This is known as the Relaxation
Method, as described by Southweli [ 4] ; it is particularly simple ir this case
because of the rectangular boundaries, but can be applied to more complicated
boundaries with little difficulty. The method is used here to obtain a solution
to Laplace's equation in two dimensions within a bounded region, with the
value of the electnostatic potential given on the boundaries. The method consists
of finding an approximate value for the potential at any point in the region by
properly averaging the potentials at surrounding points. A plot is first made
of the cross section of the transmission line, and a rectangular grid of points
separated by a distance h is superimposed. The potential at each point is
judiciously approximated, and then successively improved by going ove : the
entire net, replacing the potential at each point by the average of the surrounding
points, until the change in successive values is within the accuracy desired.

For points near the tircular boundaries of the wires {(whose boundaries do noi
coincide with points of the rectangular net), a modified form is used for aver-
aging, weighting each of the surrounding points according to its distance

from the point being improved.

For the line with the dimensions given above, the first approximation
was made with a point spacing h = 0.10 inch. Values of potential thus ob-
tained were used for the first approximation in a second net with h = 0,05
inch, and similarly for a third net with h = 0.025 inch. For each net, the
normal derivative of the potential for each net point on the boundary was cal-
culated, and the total charge on the boundary determined by Simpson's rule
for integration, from which the capacitance per unit length was calculated.

The final net (h = 0.025 inch) for both balanced and unbalanced modes is re-
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produced in Figs. 1-3 and 1-4, respectively, showing a number of equipoten-

tial lines. Only one quarter of the crosgs section is shown because of symmetry.

The numbers below each of the net points represent potentials, while those

1 + mnAdawinoe ronwrae + Al a £+l mal 4 Svra
cutside the boundaries rgpreoent va.uls €L tal normal acorivaiive,

The accuracy of the final net can be further improved by extrapolation,
making use of the fact that the errors involved vary as hZ. Application of

such a relationship to the results gives th~ following values for ZO:

ZoB(ohms) ZoU(ohms)
First net 183.44 45. 767
Second net 161.23 41.738
Third net 155.98 40. 895
Extrapolated value 154, 27 40.626
Theoretical value 153. 85 40.629

By comparison with the theoretical values, it can reasonablv be said

that extrapolated values are within 0.1 per cent of the true value.

2, Attenuation Constant

The attenuation constant a is a measure of the power loss per unit
length along a transmission line. For a shielded line, assuming the thick-
ness of the shield to be large compared to the skin depth, this loss is en-
tirely due to the resistance of the conductors. An approximate value of
this power loss can be obtained as the product of the square of the total
current flowing and the ohmic resistance of the line per unit length; an
exact solution must take into account the non-uniform current distribution
around the cross section of the transrnission line. A matched line is, of
course, implied, so that there are no additional losses due to the presence

of standing waves.

At 750 megacycles the skin depth in brass is 5. 3. 10-6 meters,
or .00021 inch,which is certainly small compared to the .050-inch wall
thickness, and to the .0625-inch wire radius; so the surface impedance as

defined by King [ 5] is an adequate measure of the resistance per unit length.
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This is given by:

L4

' 6 -6
Rszxsﬂtw‘ﬁthwom-%z%do - 0157 chms
ke 2:1.2-10

(1-22)

The resistance of each element of the line, Ri’ is then inversely proportional
to its cross-sectional perimeter, or 1. 57 ohms/meter for each wire, and
0. 238 ohms/meter for the shield.

The current at each point on the surface of the wires can be determined
from the potential plots shown in Figs. 1-3 and 1-4 calculated by the relaxation

method, using the formulas for the surface-current density, K,

- T - 2.1
K=nxH E_-'a_n E={H 4 T (1-23)
The normal derivatives of the potential as given in the above figures, which
1
may be called —g;ﬁ , are related to the actual g—g by a factor l/k, where h is
the net spacing. Consequently,
__1 af
K=- H an (1‘24)

The total mean-square current on each conductor is then:
g n 98 i)

where the line integral is .aken completely around the surface of the con-
ductor. A numerical method of integration is used on the results of the
reiaxation calculation of the normal potential derivatives; and a normalizing
factor N is incorporated to correct for differences between the total current
on each conductor as found by the relaxation method, and the total current
which would flow on 2 matched line with the same applied voltage. N will be
the square of the ratio of these two currents. The attenuation constant is
then given by:

a=- ZLP %;P nepers per unit length (1-26)
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i

where P = total power delivered to matched load = V2/Zo
dP/dz = power loss per unit length = E IZiRi

Table 1-1 gives the results of the attenuation calculations.

3. Phase Constant 8

The phase constant B is a measure of the phase change per unit length
on the line. For a transverse electromagnetic wave, it has the same value

as in free space, or in a uniform infinite dielectric medium, as given by:

B = S w € =,_-8— radiars per meter (1-27)
o 3-10
TABLE 1-1

ATTENUATION CONSTANTS OF SHIELDED TWO-WIRE LINE

Balanced Unbalanced
Tatal I2 on each wire 173.33 157.28 amp. 2
Total I on each wire 12. 841 12.188 amp.
Total I for matched line, per wire 12.964 12.307 amp.
Normalizing factor N 1.0192 1.0196
Normalized 12 on each wire 176.66 160.36 amp. 2
Total 12 on shield 587. 60 705. 66 amp.
Total I on shield 25.630 24.439 amp.
Normalizing factor N 1.0234 1.0143
Normalized I2 on shield 601.35 715.75 amp. 2
Power loss in wires per meter 556.16 504. 84 watts
Power loss in shield per meter 142,94 170.13 watts
Total power loss per meter 699.10 674.97 watts
Power delivered to matched load 25,929 24,615 watts
Attenuation constant a .01348 .0137]1 neper/m.
a for uniformn angular current distribution .21234 .01261 Lt

a for copper wires .00764 .00812 "
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SHIELDED TWO-WIRE HYBRID JUNCTICN

AFIA L2 3 SN2 b py .

A. General Properties

The shielded two-wire hybrid junction, which is the basic element of the
two-wire impedance bridge under investigarion, is illustrated schematically
in Fig. 2-1. It consists essentially of a main transmission line A-B with a
pair of series connections C and D and a shunt connection E in the same trans-
verse plane of the main line A-B. The two series connections, one in each
wire of the main line, are necessary to maintain the symmetry of the junction
for balanced currents on the two wires; whereas a single series connection
suffices in a waveguide hybrid junction, since only a single mode will propa-
gate. The shunt connection can be made at the same point on the main line
as the series connections by making the shunt connection to the center of a

short-circuited quarter-wave stub across each of the series connections.

A hybrid junction, when properly ierminated, has the peculiar properties
of a class of four-terminal -pairnetwcrks known as bi-conjugate networks [ 6],
namely, that of effective isolation or decoupling between both pairs of opposite
terminals. Probably the earliest example of such networks was the hybrid
coil used in telephone repeater stations. The first UHF model took the form
of the hybrid ring. or "rat-race'" [ 7], consisting of a closed transmission-
line ring ox ioop with four connections spaced around the circumference such
that signals launched in opposite directions around the ring from vne input
terminal arrive at the opposite terminal in the proper phase to cancel each
other. This cancellation ig usually accomplished by making the difference
in the two path lengths equal to a half-wavelength, so that the entire struc-
ture is very frequency-sensitive. Variations of this basic design are possible
by inscrtion or removal of pairs of half-wavelength sections of lires, cr by
exchange of shunt connections to the ring for series connections, together
with a quarter-wavelength change in position. Particular combinations of
such changes can produce variations which are physically symmetrical, anda
so not essentially frequency-sensitive. Coaxial, waveguide, and two-wire line

models of the hybrid ring have been built successfully., Other examples of bi-
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conjugate networks are the directional coupler and the waveguide and coaxial

[ 8] hybrid junction, or "Magic-Tee. "

The two-wire hybrid junction described above has the desirable feature
of being essentially frequency-insensitive, since its properties are based '
chiefly on physical symmetry alone. The only frequency-sensitive elements
are the guarter-wave stubs which permit series and shunt connections at the
same point (without resorting to such mismatched structures as currentloops).
However, for frequencies frem 0.5 to 1.5 times the design frequency, these
stubs effectively shunt a‘fairly high reactance across the series arms, which
can be matched out if necessary. The actual construction of the experimental
model is such that the position of the short-circuiting bar terminating these
stubs is adjustatle (by means of a threaded rod insertcd from either end of the
shunt arm), so that the length of the stubs can be made equal to a quarter-wave-

length from 200 to 1000 megacycles.

The bi-conjugate properties of a hybrid junction make it useful as an
impedance-measuring device. Power fed into either the series or the shunt
arm will not appear at the other if identical loads are placed on the two
symmetrical arms. If the two loads are not identical, unequal reflections
will couple part of the input power into the fourth arm. In particular, if one
of the loads is perfertly matched, the output power from the fourth arm will
be directly proportional to the reflection coefficient of the other load, which
is one method of using the junction for an impedance bridge. Alternatively,
if one of the two loads is an adjustable calibrated standard, it can be adjusted
for zero output from the fourth arm, at which point it must be identical to the
other load, whose value can then be determined frorm the calibration. This
latter scheme was used for the shielded two-wire impedance bridge. Because
of the unique property of this type of line concerning its ability to support two
modes of propagation, the performance of the shielded two-wire hybrid junction

will be investigated in more detail.

B. Theoretical Analysis

The completely rigorous analysis of the shielded two-wire hybrid
junction wculd require the solution of Maxwell's equations subject to the

appropriate boundary conditions. Certain simplifications are possible, how-
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ever. First, it can be shown from the relative dimensions that two, and only
two, modes of propagation are possible on the shielded two-wirc line within
the desired frequency range (200 to 1000 mc.). Furthermore, assuming per-
fect conductors, a unique voltage and current for each mode can be defined
at each point along a long, uniform section of this line. This is not true near
any discontinuities because of the excitation of other modes, which are attenu-
ated as they travel away from the discontinuity, or alternatively, because of
coupling to adjacent parts of the circuit which are not continuations of the
uniform transrnission line. The usual method of solution in the vicinity of a
discontinuity is to solve Maxwell's equations by a variational or integral-
equailuon method, and match this solution to a uniform-transmission-line type
of solutvion at a point some distance away from the discontinuity. This dis-
tance in the case of a two-wire line is of the order of ten times the line
spacing; and if this distance is small compared with a wavelength, the dis-
continuity may be replaced by an equivalent lumped circuit. Experimental
verification for the validity of this replacement has been obtained for the
case of a simple shunt tee in the two-wire line described above, at 750 mega~-
cycles. Inasmuch as the hybrid junction is merely a combination of series
and shunt tees, it seenmis reasonable to insert such a lumped equivalent cir-
cuit in each arm of the junction and analyze the junction completely in terms

oi transmission line circuits.

Best uiilization of the symmetry properties of the junction for use as
an impedance bridge can be made by connecting the two impedannes to be
compared cn the symmetrical arms of the junction. Furthermore, because
there are two series arms, null detectors will be placed on both of these;
and the single shunt arm will Le used for the input. Thus, referring to
Fig. 2-1, the input will be at arm E, the two impedances for comparison on
arms A and B, and the detectors on arms C and L. The four junction points
wiil be numbered as shown on the figure; and the positive direction of cur-
rent flow will be taken into the junction from arm E, and away from the
junction for the others. The voltage at each junction point will be specified
with respect to the shield, or ground, terminal. The following designations

will be made:

Vn = voltage at the n'th junction point,
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= balanced cursrent component at the m'th terminal pair,

—
i

mB
ImU = unbalanced current component at the m'th terminal pair,
VmB = balanced voltage component at the m'th terminal pair,
with respect to ground,
va = unbalanced voltage component at the m'th terminal pair,
with respect to ground,
I ,n = current flowing into the m'th teiminal pair from the n'th junction

point.

By the definition of bzlanced and unbalanced components of voltage and current,
and from the oriemntation of the terminals as shown in Fig. 2-1, the following

definitions may be written:

o il 1
Vap =3V - V) Vayg =2V +V))
Voo =1iv. -v) V.. =Xv.,+v)
BB  2''3 4 BU 2Z2''3 4
(2-1)
1 1
Ve =2(V1 - V3) Veu =2V +Va)
v.. =Lv. -v) v...=1iv,+vy
53 AN pu zVatVy
I, =<(I 1,.) 1 la,, +1,.)
AB = zUA1 “ a2 IV AT SBRRT Y
Lo = 2 (Ig, - 1o,) 1 L, +1)
BB -z Up3 “Ips su - 2Zn3 *lps
{2-2)
Lo = S(1.. -1..) L. =31, +1..)
cB -~ zUc1 " les cu ~ 21 tics
Lo =i -1.) L= 3(I. + L.,)
pB - 2pz “Ipg pu ~2ZUpzt Ipg
T SR e $ T = & 1)
EB " 2zUE1 *1g3 - g2 " Igs
T =T T T T )
gu " 2Up1 Yl t gzt Igy
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From the requirements for conservation of current at each junction point,

the following relations may be written:

Igy = 1a1 Y1 Iga =1a2 t1py
(2-3)
Ig3 =1g3 t1c3 Ipg “lgg *1py
Because of the quarter-wave stub in each E-terminal line,
Ig) = 1gs I, =1k
S lgpgTlg - 1g Iy = 1g1 Y g2 (2-4)

It is now desired to solve the above equations for the detector voltages
and/cr currents (VC. VD’ IC, and ID) in terms of the driving currents IEB and
IEU and the impedances connected to the various arms. In general, these im-
pedances will have to be expressed in terms of impedance, admittance, or re-
flection-coefficient matrices, relating both balanced and unbalanced components
of voltage and current, as outlined in Chapter I. This generality will greatly
complicate the solution; and inasmuch as impedances of interest are usually
symmetrical, this solution will be restricted to the c.se of no coupling between
modes in the terminating impedances --i.e., rBU = rUB = 0. If these im-
pedances are specified with respect to a reference plane at the actual junction
points, and include the effects of the equivalent lumped circuit of the junction as

described above, the following relations may be written:

Inn = YapVas Iau " YauVau

(2-5)

Ing * Yep VBB Igy * YeuVBuU, etec.

The solution can be carried ourt in two steps, one with LEB = 0 and the

other with IEU = 0, and the two combined according to the law of superposition.

1. For the case with IEB =0, from (2-4),

I
1., =1,=1_,=1_, =29

El1 Ig271g3 " lgs =3 (2-6)
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and from (2-3),

_ _ - _1 _
Ia1 Y1gy " laz ¥1p; " lgs tles =lpgy t1py =7 gy te=a)
IA and IB can then be eliminated from (2-2) to give:
Fyo = Vo Vo =l =B, o &2l s = Ty
AB = YaBVas " z2Ua1 142 =3 lpz - 1cy
Lyoe 2 ¥ Vpee =D,y +1, ) =4I, -1 1)
AU S YauVau T2 0a1 Y142 =3 Ugy - 1c) ~ Ip2 (2-8)
Boee = W Voo = Sl o T A =aif 1..)
Be ~ Y VBB “Z!Bs3 "Iy T3 lpy " Ic3
PR SRR | SR ' RGN s e € B i)
BU =~ YeuVeu "z B3 * 14 =z Ugy “ I3 ~ Ipg
But from (2-1),
Vi=¥en?Yeu V2=Vps * Vpu
’ (2-9)
V3=Vecu - Ves V4~ Vpu - VDB
And from (2-2),
Icy = lcs ticu In2 “ips *Ipy
(2-10)
Ics " leu - Icp Ips “1py ~Ipg
Combining (2-1) and (2-9),
Vi =2 (V, -V, =t (Ve 4+ Ve -V =V )
AB -3V -V =30 *Vey - Vpe " Vpu
Vo s (V. 4V =R (VL 4V VeV )
Az ¥V} =5 Vg *Veoy t Vo t V!
(2-1i)
r21 - -1 . -
Ve " 2V3 -V =3y - Ve - Vpu tVpB
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Vooo=dwvoev)=Low. v +v. -v_.)
Bu - 2WV3tVy) " 3WVey - Ves * Vpu - VpB
And combining {2-8) and (2-10),
VoY g = s (I +1 1. -1.)
ABYAB " z2Upp *Ipy “Ies ~ lcu
VY, =L -1 I I I 2-12)
autau "2y " IcB " Icu “ b T bu! (2-1
VoY =l -1 1. +1..)
BBYBB ~Z!pu "~ us “lcu *lcs
Ve Yo ==(1 1. +1 I +1..)
BU'BU " 2Z2YEU “*'cuT'cs  DUT DB

Then using (2-5) in (2-11) and (2-12) and combining

VesYatYen) * VeuYast¥cu) “ Vo YA ¥YpB) - VpulYant Ypy! =0

VestYaut¥er) * VeulYaut¥euw * Vo' Yau t¥Yor * VpulYau t¥ou! = &y

Ve Yt Yot VeulYeetYeu! VoY *YDB!) - VDu'¥YBB YD =0

Yeg) +V Yop)tV

pult¥ry *¥py) =y
(2-13)

Ve Yput cu'¥put¥cu! - Vos¥put

Equations (2-13) represent four equations relating the four voltages,
and may be solved simultaneously by the determinant method. The deter-
minant of the set may be evaluated by expansion in terms of its minors,

and becomes:

Y

A= 2AY g5 - Yppl¥ay - Yyu!¥ep ~ Ypp)¥cy~ Ypu!

-(U + DB,DU)(B + CB,CU) - (U + CU.DBj(B + CB,DU)
-(U + CB,DU){B + CU,DB) - (U + CB,CU)(B + DB,DU)

(2-14)

where the factors in parentheses are defined as follows
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(B4P,Q) = (Y, g +YpNYpp + Y o) H(Y  p + YQ)(YBB +Yg,)
(2-15)
= {
2Y pn¥pp * Y Y H{Y g + YR WY +Y )
(U+P,Q) =(Y,pyt Yp)(YBU + YQ) (Y oyt YQ)(YBU +Yp)
=2Y Yy t 2YpY o + (Y oy + Y N¥p +Y )
The solution for the four detector voltages becomes:
- I A =1
v i Iry (Yau - Ypu! L(13. + DB,CU) + (B +DB,DU)} (2-162)
CB & | -(Ypag-Ygp) Yoy - Ypyul¥ay + Ypyu + 2¥ps)
—— il - = T T
s (Ypop - Ypp! ¥y Yguy¥cp - Ypp) - (B + DB.DU)x
Vg = —— .
CcuU 2 (YpaytYgy + 2¥gpg) - (B + CB.DUNY 4y + Yy + 2Y )
L
(2-16b)
g
~ (Y, - Yo ){B + CB,CU) + (B + CB,DU)}
v = E_g i R i (2-16c)
DB & [+(Y g - Ypgi¥cy - Ypy)!l¥ay * YRy * 2¥cB)
m (Y. = - - 1
g, [ FaB = VBB Yau - Yu!¥cp ~ Ypp) * (B + CUDBIx
v = \
DY a L (Ypou+tYgy t 2¥cp) + (B + CUCBIY  (y +Yprr + ZYDB)J

2. For the case with IEU =0, from (2-4)

1
_ _ _ EB
gy Igo"lgs =~ gy =2

and from (2-3)

. = [ = - =1
a1 tlc1 7142 Ip2" 13t g3 =Ipg " Ipg = 3 L

IAn and IBn are then eliminated from (2-2) to give:

(2-1€4)

(2-17)

(2-18)
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1, =Y, Vg =a(log <1 +1_.)
AB - YaBVaAB "3 UEB “Ic1 t1p:
_ __ 1 E
Iau = YauVau -2 Uc: t1p)2 (=42
L I TS T S S
BB - YeeVBB ~ZUEB " Ic3 " Ipa
1
Inu = YpuVey ™~z Uc3 * Ip4)

Using (2-9), (2-10), (2-11), and (2-5) to eliminate the desired quantities

gives another set of four equations relating the detector voltages, as foliows:

VesYaB* YeB! *Veul¥as * Yeu!) " VosYas * YpB! - VoulYas * You! “ ks
VepYau * Yes) Y VeuYau *Ycu! * VpeYau * YoB! * VpulYau * Ypu! =0
V¥ *YcB) Y Veul¥se tYeu! Y VoBYBR * YpB' - VpulYER *YDU " EB

Ve YBu t YeB) *VeulYButYcu! “ VoslYeut YpB! * VpulYBu *¥Ypy! =90

(2-20)

The determinant of these equations is the same as for the first sct,

given by (2-14), and the solution becomes:

g | (Yap - Ypg! {(u + DB,CU) (U +DB,DUY}

v = (2-21ia)

CB 2 |-Yy - Ygy) Yy - Ypu!¥ap * Ypp * 2¥pp)

1o [Yas - YpB)¥ 4y - Yo M¥cp - Ypp) - (U + DB,DU) x

V =

CU ™ "5 |(Ypp +Ypy + 2¥cp) - (U + CBDUNY 55 + Y + 2Y [ 1)

(2-21b)

o _zs[(¥ap - Yap) {(v +cB.cu) + (U + cB,DU)}

DB~ A |,y (2:21e)

au "~ Yeu'¥cu ~ Ypu¥am *Yms * ZYCB)_I
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v
DU Y,p+Y¥gg t 2¥cp) +(U + CUCBAY,p + Ygp + 2¥0)

.
e | (YaB - Yp)Yayu - Ypy!N¥cp - Ypp! * (U + CU.DB)x
& |(Yppt¥y

(2-21d)

By the theory of superposition, the total voltage at each of the detectors

at C and D is the sum of the components given by (2-16) and {2-21).

The behavior of the denominator can be determined by expan.sion of

(2-14) into the following:

HY pgY¥au¥BBYBU *YeBYcuYDBY DU

+(YAB +Y

HY¥cpt¥cu *¥pp* DU {YABYAU(YBB *Yay! tYpppu¥ant YAU)}

= = ¢
8= -4 1 +(Xpg¥ gt Y o u¥pu!Yepcy * Yer Yput YoBYcUu * YoBY DU/

+Y,.Y +Y

BeiauYecrYcu t Yea!

H ca'ps t Ycutpu

YaYpU pBYDU

Y Weos W oz ® ¥

Y an¥au*¥BBY80" YcBYDB *YcBYDU * YDBYCU * YDBYDU!

|

(2-22)

which is seen to be a very well-behaved function with no apparent singular:

ies.
A particular case of interest occurs when the admittances of the two

detectors are identical, i.e., YCB = YDB and YCU = YDU' For *his - ase,

the detector voltages are:

- - ) .
Vop = =2~ (Yay - Ygy) (B + CB,.CU) + —5= (Y, p - YU + CB,CU)
I T - Yy (¥ 50 ~ Tusa)
5 AU " "BU! | AB ~ 'BB (2-23a)
Z| "EU [0 + CB,CU0) EB (B + CB,CU) '

=t

autYsp +YBU){Y ceYcu¥pe *Ypv? *YopYput¥cn YCU}
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-2y -2lpp

Vey = —5— Tyt ¥yt 2Y~p)B +CB,CU) = (Ypp +Ygg +2Y - g)U + CBQV)
al Y put¥pyt? cp) (Y ,pt¥ppt?¥cp)
=7 l_‘]EU (U+CB,cU)  ~ 'EB (B +CB,CU) (25250

v —ZIEU(Y -Y...)(B + CB,CU) -Z—IE(Y - Y__)(U + CB,CU)
pB = "2 Yau "YBU ’ 2 YAB " 'BB ’
_il, Yau " Ysu) | Yap ~ Ypp .
zllgu T3 cB.cu) ~ lEB(B+CB.CUY 2

~21g 21 o

Vi = o (Y gyt Yyt 2Y c)(B + CB,CU) + (Y ;g +Ypp+2Yp)(U + CBCU)
o[ Uapt¥agt iy B (Y pp*+ Ypp+2¥ op) -
-2 ‘EU T {U ¥ CB,CU) EB (B+CB,CU)

An examination of equations (2-23) leads to the following cunclusions
concerning operation of the shielded two-wire hybrid junction as an impedance

bridge:

s A - ) -l 3
(1) The balanced components of detector voltage, VCB and ‘,DB’ do

exhibit nulls when the load admittances YA and Y are identical. Further-

B

more, for balanced input currents I this null s dependent only on the

EB’

identity of the balanced components of load admittances, Y and YB and

)
ior unbalanced input currents, the null is dependent only 6nAiB:ientity ofBun-
balanced load components, YAU and YBU' If interest is center=d chiefly in
measurement of balanced components of admittance, an effort should be made
to provide only balanced input currentr, This is particularly true if the ad-
justable standard admittance does not permit independent adjus/ment of its
balanced and unbalanced components. It should also be noticed that the phase
of the balanced detector voltages is the same for contributions from unbalanced
input, currents, but opposite for balanced input currents; this fact may be of use

in differentiating against the effects of unbalanced input currents.
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{2) It is apparent that the urbalanced components of detector voltage
do not exhibit a null for identical load impedances, and in fact would dis -
appear only for a very special combination of both balanced and unbalanced
inputs. Consequently, if the above null property is to be made use of, de-
tectors must be used which respond only to balanced voltages, and differentiate
very sharply against unbalanced components in order to indicate a null of the

balanced components.

{3} Tinally, the conditions imposed on the solution (2-23) should be re-
viewed. These are that the detector admittances be identical, including both
balanced and unbalanced components. Thic places certain restrictions on the
detectcrs themselves, as well as any combining network incorporatied to take
advantage of thc relative phase of the voltage components. In general, it
would also be advantageous to terminate both mcdes at the detectors in some-
thing approaching their characteristic impedances, in order to reduce reflec-

ticns and standing waves in the detector arms of the hybrid junction.

The only other outstanding assumption involved is that the loads do not
couple modes; even if this is not true, gualitative aspects of the performance of
the hybrid junction may still be obtained from Egqe. (2-23).
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